Zhen Zhan
CSE 403

LCO Analysis

 Data Management Software for Multilevel Marketing
Operational Concepts:
 Nowadays a new kind of products sales method called multilevel marketing (or network marketing) gains popularity around the world. It differs from traditional sales method which distributes through retails stores, websites, or whoever probably the customer does not know. Under the network marketing system, every person joins the sales network of a company by purchasing some products of this company through one of his/her friend then becoming a downline of his/her friend and part of this system. Then he/she would develop his/her own downlines through his/her social network by selling the company’s products as his/her upline does. Everytime someone buys a product through this network, his/her upline and some levels of his/her upline’s uplines would get certain amount of credit. This credit or award would stimulate everyone in this system to develop their downlines and thus sell the company products. This briefly describes this new kind of sales system and how the system could survive in this competitive business world. Some companies grew incredibly large such as Amway and Nu Skin without any retail stores, professional sales team, or any advertisement. As the system grows larger and larger, to manage and keep track of the sales record becomes a tough task. So my idea is to create a client-server system including convenient client interfaces and central server data management to facilitate their business. The central server would store the information of all members of this system into a database and modify the data frequently. On the client side, once he/she opens the window and connect to the central server, he/she would be able to see all his/her team members(all his/her downlines at any distance) and their sales record.

System Reqyurements:
 The central server would collect all necessary information from all existing members including name, ID, address, upline, sales record, and credit. This information should be stored securely in a database. This database would support multi-client quires at anytime. System managers would update the information after changes have been made or the sales record after a transaction has been finalized. Also new member’s information would be added to the system and the credit would be given to the upline at the central server.

 For a client, once he/she launches the program through a desktop or labtop, a pop-up window would request for user-name and password then to connect to the central server to retrieve all necessary information. Intuitively, a team looks like a tree in its computer science concept and all team members would be nodes to consist this tree. After all information of a user and his/her team is retrieved from the server, the program would display a tree so that the user would be the root, his/her direct downlines would be the first level children, and all direct/indirect downlines without their own downlines would be displayed as leaves. The user would be able to have an intuitive view of his/her entire team and also be able to check details of each member by clicking on the representing node.

System and Software Architecture:
 On the server end, though I was intuitively thinking to implement the database by adopting the tree structure as we learned in data structure course so that we can create our unique database and save lots of access time when the data size grows as large as in practical life. But after detailed review, I could hardly think of a unique and ordered key to assign to each user (node) in order to access this node. So basically I have no choice but to implement the database by using MySql, because it is stable, functional and easy to communicate with the clients’ ends based on my experience. In this case we need to access the departmental server and might be better to create a webpage in C# for data manager to modify the database.
 For the client interface, I would prefer using JAVA which I am most familiar with and is capable to build up connections with database server. For the implementation after retrieving data from the server, I am thinking to adopt the idea of breadth first approach. We first put all the information into a 2-D array, with each row representing each team member and each column representing one attribute. And we would have created a class Node whose object would represent each team member. A Node would have a graphic representation on the screen and a line connecting to its upline. Also, if the graphic representation of this Node is double clicked, another window would pop up with all details associated with this Node (this team member). Therefore, we start from the root (the user node), create an object of Node for a team member, e.g. team member A, and then create Nodes for all team members whose upline is A, then go on recursively until all row entry of the 2-D array has a Node representation.

If it is possible, we can develop more functions for the client interface such as displaying the most earning person in a team, folding or unfolding a subtree, and calculating the total sales result.

Lifecycle Plan:

 As it is supposed to, the majority of the potential users of this program would be those members in the multilevel marketing community, especially those with large teams. My mother and some friends are part of this business. They were always complaining to me that it is hard and incontinent for them to look through and have some sort of controls over their teams, since most of them have at least 100 team members. Typically, they could not even remember the identity of each of their team members. And that is where my motivation came from. I believe, everyone in the multilevel marketing system is tired of making hundreds of calls to the company to inquire the team status. So, as this business is getting more popularity, a lot of people would be the potential clients if we can design the program nicely and securely as we expect.

 On the central server, some database specialists have to do daily maintenance and frequent updates to the database.

Feasibility Rationale:

 In this program, jobs are divided in two parts: to develop a database server and to create a client interface with communication capability. For the database, it is easy to create on the departmental server using the Enterprise Manager. Since MySql supports all queries we can think of for this program, so basically it is done for the server end. Even if a website for database management is necessary, it still would not add too much work. So we need to work mostly for the client interface. However, it is no more than a combination of tree structure, server connection, 2-D graphics representations and some user interactions. Actually, I have designed a single user program for my mom this Christmas with data in a text file. So with much more developer, resource, and time it is feasible to develop a multi-client/server program with much more sophisticated functions supported.
